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Post-Newtonian Estimation in Relativistic Optics 
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Received April 6, 1992 

A post-Newtonian analysis of the theory of gravity based on the metric go.(x, y) = 
7u(x) + c~/c2( 1 - 1/n2) YiYj with the index of refraction n(x, y) is given. A generalized 
Lagrange space endowed with this metric is used for the study of gravitational 
phenomena. The index of refraction n(x, y) is expanded in integer powers of 
the gravitational potential U = GM/re 2 and vZ/c 2. It is shown that solar system 
tests impose a constraint on a combination of the constant c~, the post-Newtonian 
parameters defining the index of  refraction n(x, y), and the post~Newtonian 
parameter 13 associated to the Riemannian metric yo(x). 

1. INTRODUCTION 

The generalized Lagrange 
endowed with the metric 

spaces (Kawaguchi and Miron, 1989) 

O/ gij(x,y)=yij(x)+-~yiyj, i , j=l,2,. . . ,n (1) 

where ,/q(x) is a Riemannian metric, y~ is the Liouville vector field, and 
is a constant, have been used for the study of gravitational phenomena 
(Asanov and Kawaguchi, 1990; Roxburgh, 1990). The metric (1) was studied 
by Beil (1987, 1989) and used in some problems from electrodynamics. It 
is related to a new class of Finsler metrics (Beil, 1989). The post-Newtonian 
orbits for a theory of gravity based on the metric (1) are examined by 
Asanov and Kawaguchi (1990), who concluded that the observations of 
planetary motion impose the constraint a -< 10 =3. The model was reexamined 
by Roxburgh (1990), and it was shown that solar system tests do not impose 
a restriction on the value of a, but only on a combination of a and the 
standard post-Newtonian parameter fl for a Riemannian metric. 
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A generalization of the metric (1) has been considered by Kawaguchi 
(1991) in the form 

go(x, y ) = y , j ( x ) + ~  1 - ~ 7  Y~Y, (2) 

where n = n(x, y) is the index of refraction of  the medium. This metric 
appears for the first time in Synge (1966) and it has been used in the study 
of the propagation of the electromagnetic waves in a medium with the index 
of refraction n(x, y). A study of this metric from a geometrical point of 
view was done by Miron and Kawaguchi (1991 a,b) with the main emphasis 
on applications to relativistic geometrical optics. 

In this paper we present a post-Newtonian analysis of the theory of  
gravity based on the metric (2). We expand n 2 in integer powers of the 
gravitational potential U = G M / r c  2 and v2/c2: 

/)2 /)2 /)4 
n 2 = 1 + eU+ 6-~+ i~U-~+ 12U2~ - o ' 7 - 1 - . . .  (3) 

where e, 6, /x, v, and o- are new post-Newtonian parameters of the model. 
This choice is in accord with Fock's results (Fock, 1962) obtained from the 
study of light bending in a gravitational field. We show that solar system 
tests impose a constraint on a combination of c~ and the parameters fl, e, 
/x, u, and o-, where /3 is the standard post-Newtonian parameter for a 
Riemannian metric (Will, 1986). 

2. GENERALIZED LAGRANGE SPACE AND METRIC 

We follow here the terminology in the book of Miron and Anastasiei 
(1987). Let M be a C ~ m-dimensional real manifold (in particular we will 
choose m = 4 ) ,  ~-: T M - > M  the tangent bundle of M, and (xi, y i) 
(i, j, k , . . .  = 1 , . . . ,  m) the local coordinates on the total space TM. Suppose 
that yq(x), x ~ M, is a pseudo-Riemannian metric on the base manifold M. 
Then, for a point u ~ TM, with ~r(u)=x,  y;j(~-(u)) give us a d-tensor field 
on TM, symmetric, covariant of second order, and of rank m. Therefore, 
yi = yq(x)y  j is a d-covector field on TM. We denote 

Ilyl[2= ~/ij(x)yiy j (4) 

and consider the differentiable manifold T M =  TM\{O},  where {0} is the 
null section of the projection n: T M ~  M. Consequently [lyll 2 r  on TM. 

Assume that there is given a positive function n(x, y) on TM and take 

1 
u(x, y) (5) 

n(x ,y )  
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The function n(x, y) is called the index of refraction. Then we consider 

g~(x, y) = y~j(x) + [1 - u2(x, y)]y,y~ (6) 

The following properties can be verified: 
(i) gi2(x, y) is a d-tensor field on TM, covariant of second order, and 

symmetric. 
(ii) rank II go(x, Y)I[ = m. 
The pair M m = (M, g~j(x, y)) is a generalized Lagrange space whose 

fundamental tensor (or metric tensor) is go(x, y). If 1/n2= 1 - ~ / c  2, then 
the metric gij(x, y) reduces to the metric (1). On the other hand, the value 
n(x,y)=l  implies that M m coincides with a Riemannian space V m= 
(M, y,j(x)). 

Let us suppose now that on the manifold M there is a C ~ nonnull 
vector field V~(x), x e M. Then, it can be shown (Miron and Anastasiei, 
1987) that the mapping S~: M--> TM given by 

x i=x ~, y'=V~(x), x � 9  i = l , . . . , m  (7) 

is a cross section of the projection 7r: TM--)M. Consequently, the section 
S,(M) is a submanifold in TM. 

The restriction to the section S,(M) of the fundamental tensor g~j(x, y) 
of the generalized Lagrange space M m is the tensor field g~j(x, V(x)) given 
by 

g,j(x, V(x))= yij(x)+(1 n2(x,l(x)))ViVj (8) 

where 

Vi(x) = v A ( x )  W ( x )  (9) 

This is just the metric previously considered by Synge (1966). 
The triplet ~ = [M, V(x), n(x, V(x))] is called a dispersive medium. If 

On/Oy i= O, then d~ is called a nondispersive medium. The restriction of the 
generalized Lagrange space M m to the section S,(M) is called the 
geometrical model of the dispersive medium A/ endowed with the Synge 
metric (Synge, 1966). 

3. T H E  L A G R A N G I A N  O F  T H E  M O D E L  

We will make now a post-Newtonian analysis of the theory of gravity 
based on the metric (2). We choose the Lagrangian in the form 

L = -moc(giA'icJ) '/2 (10) 
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where mo is the mass  o f  the test particle.  Then,  using the metr ic  (2), this 
Lagrang ian  can be writ ten as 

L = - m o C  S 1 + - ~  S (11) 

where  

y~ = %j2 j (12) 

and  

S = 7i~2~ j (13) 

Cons ider ing  M a 4-d imensional  p s e u d o - R i e m a n n i a n  mani fo ld  and  
making  the index convent ion  i = (0, a) ,  a = 1, 2, 3, we have 

va V~ 
S = T o o + 2 T o a - - + T a b - - - 7 - I  C 2 (14) 

C C- I 

where  v a = d x a / d t  is the velocity vector. Then,  in t roducing (14) in (11), we 
obta in  

L = - m ~  T~176176 c 2 + ~  1- - s  5 

I V a b va~bDcvd va 
2 --=-v + 4 %0 To a - -  X Y~176176 C~ +YabYcd C 4 C 

v~ vav%q 1'/2 
+2yooY~b'--CS--+4TO~yb~----~J l (15) 

For  the pure  R iemann ian  case n = 1 this Lagrang ian  reduces  to the well- 
known express ion 

V a 
Lr = -rnoc2(Yoo + 2yo~ c + %b v%b'~ 1/2 --~--2 ] (16) 

4. THE LAGRANGIAN OF A STATIC GRAVITATIONAL 
FIELD WITH SPHERICAL SYMMETRY 

For a static, spherically symmetric gravitational field we can choose  
(Asanov  and Kawaguchi ,  1990) 

Yoo = 1 - 2  U + 2 f l U  2 (17) 

T,~t, = --~ab(1 + 2 T U )  (18) 

G M  
"Yoa = O; U = (19) 

C2r 
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Then, the Lagrangian (15) becomes 

1 1 1 1 

where 
reduces to that of Asanov and Kawaguchi if 

1 1 
1 n 2 C 2 

1 v2 [ ' y + 2 a ( y  1 
v2 [1 + 2~ (1 -n-5) ] - 2 U - ~  C2 L - 1)(1 -n-5) 1 

/)4 ( 1  __ %~'~1/2 
+ 2U2 [fl + 2c~(1 + fl) (1 - ~ 2 ) ]  + ~ 7 a n2J.~ 

U 2 = ~)abDa~) b 

(20) 

(6ab being the Kronecker symbol). This Lagrangian 

(21) 

i.e., for nondispersive media with constant index of refraction. 
We choose then the expansion (3) for n 2, which for e = 4 and 8,/x, u, 

cr = 0 gives the expression 

4 G M  
n 2 = 1 + - -  (22) 

C2 F 

obtained by Fock (1962). This explains the expansion (3)previously 
considered. 

Now, expanding the square root in (20) and omitting the terms moC 2, 
which do not contribute to the equations of motion, we obtain 

mo 2 

2(1 3c~e O~Y 0~1; 2 ~292~ 
+ U  , ~ - f 1 4  2 2 ~ - T - ] - T )  c2 

+ Uv 2 + y+3c~e+ .... + e a 8 4  - -  
4 2 4 

OL2~ 2 7 )  + t~4 ( l -k-  3~ 0~62 -/" -- (23) 
~-7\~ 4 + 2 8 

This expression reduces to a pure Riemannian one if a = 0 and e, 3,/x, u, 
o - r  8, tx, v ,o -=0and  a r  

The Lagrangian (23) can be also written in the form 

L 1 21 2 2 fl~2 2 "~3 /)4 24 (24) 
mo)~o 2 v 2 + U c Z ~ o + U  C ~o +v  U~o+C2,~o 
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where 

ao = 1 - O18 

Og8 
A 1 = 1 - - -  

2 

1 3 a 8  o1// OIfE 2 O1282 

A2=2 -/3"1' 2 2 {- 2 + - - 8 -  (25) 

1 3ae 3a6 a2e6 ala, 
A3=2 + y +  4 + 2 + a e ~ - r  2 

1 3o18 a8 2 O1262 19/0" 
A 4 = - - +  + q- - -  

8 4 2 8 2 

This form of the Lagrangian is obtained by taking into account that the 
equations of motion do not change when the Lagrangian is multiplied by 
a constant. 

Now, the approximation of zeroth order must coincide with Newt6nian 
theory. Therefore, we must impose the constraint 

- 1 (26)  
ao 

which implies 

8 
8 = -  (27) 

2 

Using (27), we find that the Lagrangian (24) becomes 

~ _ - -  / v 4  
L lv2+Uc2+2,1U2cZ+2,2v2U+)~37.~ 

too20 2 

where 

(28)  

&= 

1/2 -/3 + 3ae /2  - av /2  + ae2/2 + o12e2/8 

1 - ole/2 

1/2 + 7 + 3~e/2 + ~2/2 + (X2e2/8 -- cq(2 

1 -- ee /2  

1/8 + 3ae /8  + ole2/8 + a2e2/32 - ao'/2 

(29) 

1 - a e / 2  
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For  the Lagrangian  (28) to suppor t  the perihelion shift test, it is 
necessary to impose the constraint  (Will, 1986) 

A =  ! ! ! Alq-2A2+4A 3 

2 + 22 --/~ + 6ee + 2ee 2 + e2e2/2 -- e/~ -- 2cw -- ev/2 

1 - ~ e / 2  

= 3 + 1 0  - 2  (30) 

In  addit ion,  for  a self-consistent theory it is necessary that the metric 
(2) satisfy the light p ropaga t ion  condit ion.  This means that we must  impose 
the condi t ion  

dxidx,  1 
y,j--~---~ l+c~ 1 -  7 Ykm at d t J  = 0  (31) 

Then,  we must  choose (Asanov and Kawaguchi ,  1990; Roxburgh,  1990) 

3' = 1 (32) 

Consequent ly ,  the constraint  (30) becomes  

4 - / ~  + 6~a + 20r q- 0{2g 2 / 2  - -  (~/.t - -  2~a - ~v/2 
- 3 _ 10 - 2  ( 3 3 )  

1 - c ~ / 2  

For  a total dispersive medium we have e = / z  = v = 0, and then the 
constraint  (33) is s imply 

4 - / 3  - 2act = 3 + 10 -2 (34) 

On the other  hand,  the nondispersive case means e =/x  = cr = 0, and then 
the above constraint  is 

OH;  
4 - / 3  - ~ -  = 3 + 10 -2 (35) 

The choosing of  the parameters  e, 8,/x, v, and o- in the expansion (3) 
o f  n 2 depends  essentially on the physical  nature o f  the dispersive medium.  
We distinguish the fol lowing two cases: 

(i) I f  the medium ~ is nondispersive,  then we must  choose 8 ---/, = o- = 
0 and this implies e = 0. Therefore,  in the case o f  nondispersive media  the 
pos t -Newton ian  parameters /3 ,  v, and the constant  a satisfy the constraint  
(35). We emphasize that  this is the most  frequent situation which appears  
in relativistic optics. 

(ii) I f  the medium J/ / is  totally dispersive, i.e., the index of  refract ion 
depends  only on velocity, n = n(2) ,  then we must  choose e = / x =  u = 0 ,  
which implies 8 = 0. Therefore,  for such media  the pos t -Newtonian  para- 
meters /3, or, and the constant  a satisfy the constraint  (34). 
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5. CONCLUSIONS 

The analysis presented in this paper shows that for dispersive media 
with index of refraction n = n(x, So) the solar system tests do not impose a 
restriction on the value of a, but only on a combination of a with the 
post-Newtonian parameter /3 and the parameters introduced in the 
expansion (3) of  n 2. The constraint is given by the relation (33); of course, 
this constraint is complicated, the choice of the parameters in the expansion 
of n 2 depending on the physical nature of  the space. The mentioned 
constraint simplifies essentially in the extreme cases of nondispersive media, 
when it has the simple form (35), and totally dispersive media, when it is 
given by (34). 
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